Int. J. Solids Structures Vol. 29, No. |, pp. 5768, 1992 0020-7683,92 $3.00+ 00
Printed 1a Great Brtain. C 1991 Pergamon Press pic

PARAMETRIZED VARIATIONAL PRINCIPLES
ENCOMPASSING COMPRESSIBLE AND
INCOMPRESSIBLE ELASTICITY

Carros A. Fetippa
Department of Aerospace Engineering Sciences and Center for Space Structures and Controls,
University of Colorado. Boulder. CO 80309-0429, U.S.A.

(Received 16 July 1990)

Abstract—A parametrized five-field variational principle that can accommodate both compressible
and incompressible hyperelasticity is presented. The primary variables are mean and deviatoric
stresses. mean and deviatoric strains, and displacements. Through appropriate selection of par-
ameters the functional of this general principle specializes to those previously presented by Atluri-
Reissner, Herrmann and Franca.

1. GOVERNING EQUATIONS

Consider a linearly hyperelastic body under static loading that occupies the volume V., The
body is bounded by the surface S. which is decomposed into §: S, u S,. Displacements are
prescribed on S, while surface tractions are prescribed on §,. The outward unit normal on
S is denoted by n = n,.

The three unknown volume ficlds are displaccments u = u,, infinitesimal strains ¢ = ¢,
and stresses @ = . The problem data include : the body foree ticld b = b, in V, prescribed
displacements d = d, on S, and prescribed surfuce tractions § = 7 on S,.

The relations between the volume fields are the strain displacement equations

=}{Vu+V'u) =Du or ¢, =Yu, +u,) in V, H
the constitutive cquations

o=FEe or o,=E ¢ in V. )]

"
and the equilibrium (balance) equations

—~dive =D*=b or o,,+h =0in V, 3)
in which D* = —div denotes the adjoint operator of the symmetric gradient D = $(V+ V7).

The stress vector with respect to a direction defined by the unit vector v is denoted as
g.=0"v,or 6, =a,v,. On § the surface-traction stress vector is defined as g, = a-n or
o, = o,,n,. With this notation the traction and displucement boundary conditions may be
stated as

6, =t oro,m=ionsS, and u=doru = d on S,. 4)

2. NOTATION

2.1. Field dependency

In this investigation of variational methods, the notational conventions in Felippa
(1989a,b,c) and Felippa and Militello (1989, 1990) are used. An independently varied
field will be identified by a superposed tilde, for example i. A dependent field is identified
by writing the independent field symbol as superscript. For example, if the displacements
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58 C. A. Feuippa

are independently varied. the derived strain and stress fields are
e =YV+Vi=Dua ¢ =Ee = EDu. (3)

Using this convention, tildeless symbols such as u, e and ¢ are reserved for the exact or for
generic fields.

220 Integrul abbreviations
Volume and surface integrals may be abbreviated by placing domain-subscripted
parentheses and square brackets. respectively. around the integrand. For example:

.

(e J rdve 1 E f /dS. [f].,,"éfﬁfds. [f]s,"é"j_fds. (6)

S

¢

If f and g are vector functions, and p and q tensor functions, their inner product over I is
denoted in the usual manner:

def - - det .
(f- g)l = J‘ fl.‘,l d l/v (p~ (l);’ = J‘ /’;/(I// d[ . (7)
b 1N
and similarly for surface integrals, in which case square brackets are used.

2.3, Stress and strain vectors

To facilitate the construction of variational matrix expressions, stresses and striins
will be arranged as 6-component column vectors constructed from the tensors g, and ¢,
following the usual conventions of structural mechanics

- r 3

mﬂ Cyy

T €22

Gy, Uy
=< r.oe=< > (8)

P 2¢,

(253 2('3;

Lﬂ'n LZUH

7 4

Then (a.¢), = (6,¢,), = (a’¢),, and so on. Similarly, fourth-order constitutive tensors
such as £, are arranged as symmetric 6 x 6 matrices (resulting from their restriction to
the space of symmetric stress-strain tensors) in the usual manner.

3. STRESS STRAIN SPLITTINGS

For incompressible materials, in which divu = tr Vu = u,, = 0, the stress-strain
relation (2) only holds in the spuce of traceless strain tensors, and its inverse does not exist.
With a view to including both compressible and incompressible clasticity in the variational
principles, some general splittings of the strain and stress ficlds are studied below. Define
(actual) pressure p and total strain condensation (negative of the volumetric strain) ¢ as

p=—itre= (g, +0:+0,)
l)= —tre = —(L’||+L’:3+C'_\3) = —‘di\' u. (9)

Throughout this paper it shall be assumed that the material is volumetrically isotropic in
the sense

p = ko, (10)
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where & > 0 is the modulus of compression (one third of the bulk modulus K). In the
incompressible limit, A — x.

3.1, Parametrized splitting
A family of stress-strain splittings considered here is

o, =5, —=3Ipd,. e, =gln,—indd,. (n

where J,, is the Kronecker delta. and ¢ and 4 are scalars in the range [0. 1] that determine
the splitting. If & = 0. s(0),, = 5,,. whereas if & = 1, 5(1),, reduce to the usual deviatoric
stresses s,; and the argument ¢ will be omitted. If & = 0. g(0),, = ;. whereas if $ = 1, g(1),,
reduce to the usual deviatoric strains g,, and the argument y will be omitted.

Using the matrix notation (8) for strains and stresses, (11) is represented as

o =s()—3iph. e = g —noh, (12)
where h is the 6-component column vector:
h={1 1 1 0 0 07 (13)

Note that h'h =3, h'ea=tra = -3p. hWe=tre= -0, h's(&) = trs(d) = =3(1=3)p.
hgm) =treg(p) = — (L=, and h's = h'g = 0.

3.2, Constraints on & und y
Parameters & and i are not independent but chosen so that s(3) and g(n) are conneeted
by an invertible “deviatoric™ constitutive equation

\(5') = ('g(") or -"(é)u = (‘:/kl.(/(”)kh (|4)

where € is finite and nonsingular. This condition is assumed to hold if £ = 5 =1 for any
material. For other values the choice is possible if the material is fully isotropic because, if
this is so, (2) may be written [see e.g. Section 22 of Gurtin (1972)]:

a, =2ue, +iv or @ =2ue—itlh, (15)
where goand 4 are the Lamé cocthicients (g is the same as the shear modulus @), so that
C = 2ul. Furthermore, pu, 4 and & are related to the clastic modulus £ and Poisson’s ratio
v through

Al 4v) E - AL=2v) | ) E
= = =Y3i+20). nu=" T =dk=i) =,
k W 31— 2) V3A+20). ” Wk —4) ST (16)
Substituting these relations into (13) and (14) onc obtains the refation
(14 )3 = (1 =2v)y = v, an

The pair & = 5 = | satislics this constraint for any v. If v £ 0.5, speciflying 0 < < 1 or g
determines the other; for example if g = 0. & = 3v/(1 +v). If the material is incompressible,
i.e.v =05, ¢ =1 regardless of the value of 4.

3.3. Deviatoric splitting
The usual deviatoric stress strain splitting is obtained by takingé =y = 1:

6=s—ph. e=g— {0h (18)

As noted above, this choice satisfics the condition (14) for isotropic or anisotropic materials.
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3.4. Lamé splitting

The Lamé splitting for isotropic matenals—so called because of its intimate relation-
ship with the constitutive form (15) that displays the two Lamé coefficients—is obtained if
n = 0so that g = e. Then ¢ is chosen so that t = s(&) = 2pe:

v
= _F -2 ——— =T —
o = Ce—Cph = 2pe Ty ph=1—gh (19)

In the literature ¢ = &p is called the pseudo pressure whereas © = s(£) = 2ue = Ce is called
the extra stress. although a better name would be pseudo deviatoric stress. In the incom-
pressible limit, pseudo pressure ¢ and extra stress t reduce to ordinary pressure p and
deviatoric stress s, respectively.

Although the Lame splitting may in principle be extended to anisotropic materials, par-
ameter & then becomes a matrix : I —(3k) ~'C. which complicates derivations substantially.
The same is true of (12) unless &£ = n = 1. It follows that splittings other than (18) are of
limited value for non-isotropic behavior.

4. THE GENERALIZED STRAIN ENERGY

The variational principles of linear elasticity studied here have the general form
n=Uu-"°. (20)

Here U is the generalized strain energy, which characterizes the stored cnergy of defor-
mation, and P is the forcing potential, which characterizes all other contributions. The
conventional form of P s

P = (bu),+[u—d,a,)s, +[i uls, 21

Two other forms of P, which arc of interest in hybrid finite element formulations, called P¢

and P’ for displacement-generalized and traction-generalized, respectively, are studied in

Felippa (1989a,b,c) and Felippa and Militello (1989, 1990). As this term is not affected by

material behavior, attention will be focused on U.

For a compressible material, the generalized strain energy introduced in Felippa and
Militello (1989, 1990) has the following parametrized structure :

U= 111000 +/126.8)y +/13(8,¢)p + 122(6°.8) ) + jar (0. €*)p + Ly (e, ¢%)y,  (22)

where j,, through j,, are numerical coefficients. The three independent fields are stresses 4,
strains € and displacements 4. Following the notational conventions stated in Section 2, the
derived fields that appear in (22) are

o =E§ ¢ =EDi, ¢ =E"'6, ¢ =Di. (23)

As an example, the U of Hu-Washizu’s functional is obtained by setting ji, = —1,j,;, =1,
J22 =1, all others being zero

Un(6,8,1) = 1(a°, &)+ 1(d,¢" — &)y + (0" — 0", "), = (0", &), +(5.¢" —&),. (29)

Equation (22) can be rewritten in matrix form as

Jaab julf§E pdV (25)

0 e[ jnd  Jjul joll(e
I
v
o ymm J3;1d Le*

where I denotes the 6 x 6 identity matrix. The functional-generating symmetric matrix (to
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justify the symmetry note, for example, that j,;(G,€*), = 1/ ;(6.€")v+ 1/ 5(e’, 6*)y, and so
on)

jl I jl 2 jl 3
by =\ji2 Jja2 Jus (26)
jl 3 jl] j33
is seen to fully characterize (22) hence, once the forcing potential Pis selected. the functional

(20). The subscript of J identifies the number of independent parameters, as shown below.
On replacing (23) into (22), U may be expressed in terms of the independent fields as

| )\ T[jE™' Jial Ji:D g
U=§f ér | il JjnE  jnED [{érdV. 27
y
a Lj,D" j,,D'E j,,D'EDJ{a

which verifies the symmetry of J,. Using (27) the first variation of U may be presented as
oU = (Ae, 06), + (As, 0€) . — (div 6", 50), + [0, Jil]s, (28)
where

Ac = j " +j 28+, Ao = j120+j220" 410",
6’ = j116+]130"+ji0" (29)
The last two terms in (28) combine with contributions from the forcing potential variation.

For example, if P is the conventional forcing potential (21), the complete variation of
M=U-"Pis

oI = (Ae, 36), + (Aa, 5¢), — (div o’ +b, 8i), + [0, — 1, 8], — [4 - d, da,ls,.  (30)

Using P or P' does not change the volume terms. Consequently the Euler equations
associated with the volume terms of the first variation

Ae=0, As=0, dive’'+b=0, 31

are independent of the forcing potential.

For consistency of the Euler equations with the field equations (1)—(3), one must have
Ae = 0, Ag = 0 and o’ = ¢ if the assumed stress and strain fields reduce to the exact ones.
Therefore

Jutint+jn=0,

Jutjn+jn =0,

Jutintin=1 (32)
Because of these constraints, the maximum number of independent parameters that define

the entries of J; is three as claimed. The specialization of these functionals to conventional
and parametrized forms is discussed in Felippa and Militello (1989, 1990).

5. SPLIT FORM OF GENERALIZED STRAIN ENERGY

The expression (22) for U is not suitable for incompressible materials. To construct a
parametrized form that encompasses incompressibility the generalized strain energy is



62 C. A, Fevppa

augmented with additional independent ficlds. one of which must be the pressure. There
are several ways of accomplishing this objective. Here the sturting point is the conventional
deviatoric splitting (18) and construction of an augmented generalized strain energy U,
(subscripts stand tor ““deviatoric split™) in terms of the five independent fields $. g. 4. § and
f. Using (23) as a “template™ the following quadratic form is postulated

)7 , 3 . . . . 1 7 .
(5 rxlul Ji:l Jial S jish jih gl
¢ Jal J2:1 Jail Jasho jsh jih g
i “ il . | iwh jh "
= iJ ) S— ¢ 'J,u : 'j}-lr ./,n f .I,.u /,. /_.w.h ) & dr (33)
< J P Juih Ji-h Ji:h Jis Jas Jie 0"
/’" i h” js:hr ./S‘hr Jsa Jss Jso q
\[’“J _I.hlhr jh:hr _/'e.xhr Jos Jos oo ] U)"J
in which the derived fields are
g =(D- th div)a = Dua g =C's. 0=k 'p #=—diva,

s/ =Cg s'=Cg' =Cha. p' =k, p*=k0" = —k div . (34)
The kernel matrix of the quadratic form (33) is now 21 x 2t and is characterized by the 36
Jeocetlicients. Unlike the treatment in Section 4, coetlicient symmetry conditions are not sct
ab initio. Substituting (34) into (33), €, may be expressed in terms of the five independent
ficlds as the quadratic form

817 JnC ! i
l 4 ./..‘ll j.‘.‘(:
U, = 2J: i JabD) +jnkgrad h'C Y L DICHj, ok gradh”
Fil Jah'C ! Jy:-h'
0 jakh'C ! Jvikh”
JiiD, 4/ hdiv sk 'h
€D, + 1, Ch div juk 'Ch
DIC(j D, +jhdiv)
+hgrad (jo;h' D, +/,, div)  j,hk 'D/Ch+j,, grad
Joh D, 4y, div Jask !
Jsihh' D, + s,k div Jsa
Jish S
7:,Ch X
JusDICh+j, sk grad as>dV  (35)
Jas p
Jask a
in which

grad = div’ = [J/dx,

¥l

CieX (?/(?.\.‘1 : r

when applied to a scalar function. The kernel matrix in (35) must be symmetric, a condition

that provides the following symmetry relations:

jnm =jnl"v m = l. 2. 3 n = l. 2, 3

Jonl = Jumk "' C.

.I."lll = .j"l"‘
m=4.756

m=4,56

n=17273

n=4.135,6

(36)
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If these conditions are imposed on (33) that kernel matrix becomes

jul izl Juisl Jubh o jish jieh
Ji:l Jj2:l Jul J:aho jash jaeh
Jisl Ja:l Jasl Juh o jish jseh

jl.;k_lchr j:_gk_lchr j_x.;k-lchT _l-l-l _/JS _’46
JiskT'ChT jukT'CRT O ik TIChT as o Jss o Jise
_jlhkflChr JkT'ChT ik T'CRT O jue s Jise

This is fully characterized by the 6 x 6 functional-generating symmetric matrix

(i d di Js dvs Jie

Jooo Jir Qi Jaa Jis o Jre
J,..= Jox iy S S Jys o Jae

Jis Jr S Jas Jus o Jae
Fis  Jas o S Jas Jss o Jse
jl(v j:h j‘h jJﬁ j,‘ﬁ jhfv

63

(37

(38)

(the J subscript denotes the number of free purameters, as explained below). The kernel

matrix of (35) becomes

[inC ' il b, =i div jisk 'h jish
j2aC I €D, — /., Ch div Jask 'Ch J25sCh
j”[): CD, + ook grad div) Jrk o ll),’:.Ch j"_gl)fCh
—j1s(D]Ch div+grad h'CD,) —Jao grad  —jok grad
Jask ™! Jas
Jssk

symunt

The first variation of (35) is

SU, = (Ag. 03), + (As, 08) s — (div a”, 30) - + (A0, 35) v + (Ap, 50),- + 4", il s,

where

Ag = jug HinB+Hing +h(u0 +jis0+60Y).
As = j 8 +j28 + /138" + Ch(jn0" +)250+ /240,
o = S+ s+ B(L0"+j1s04j.0%)
+hh7 (184268 +/368") =N (sop + 560" +JseP")

=S +)28 4538  + BU " +35s0+/360°) = hGsep +isep” +josp)s
A() = hrk" l(j|4§+j34su+j_145u)+j44()p+j45(7+j.|(,0“ =j¢40p+j450.+j460u~

Ap = W (i 8+)258 + /358" ) +fasP+jssp” +iseP” = jusP+issp’ +jsep"

(39)

(40)

(41)

where B = (1— }hh")Ch, and thc simplifications in ¢’, A0 and Ap result from
h's = h's’ = h's* = 0 since the deviatoric stress tensor is traceless. Applying again the
consistency argument and noting that mean and deviatoric parts may vary independently,
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one obtains the constraint conditions

Ju+iiz+ii =0, jiutjis+jie=0. jia4jatj =0,
Jrstistie =0, jistiatin =L Jutiist+ie =0,

Jsetisetios = L Jas +Jis+jie = 0. Jas+jss+ise = 0. (42)
Because of these nine constraints the maximum number of independent parameters that

define the coefficients of matrix (38) is 21 =9 = 12 as claimed.

6. SIMPLIFICATIONS

Having a o '" family of functionals for constructing approximation methods such as
finite elements leaves the selection wide open. In the absence of other information it appears
prudent to reduce the number of free parameters by setting all coefficients that couple mean
and deviatoric quantities equal to zero:

Juiw Sir Jiv O 0 0
Jie Jao o Jn 0 0 0
hov e a0 0 0

J. = | ) ) ) 43
0 0 0 Jaa Jas  Jse ( )
0 0 0 ji Jss o s
0 0 0 Jju Jeo Jes |

subject to the constraints that the row (and column) sums be 0, 0, 1, 0, 0 and |
respectively. This simplificd form exhibits six independent parameters,

The next question is how to include exact incompressibility, for which & — o¢. A study
of the matrix (39) reveals that the only coeflicients affecting terms multiplied by & are js
and j,,. One solution would be to tuke jss = j5/k. and j,o = foo/k with the primed
coeflicients as source data. A more expedient solution is to set those coctlicients to zero,

which reduces (43) to

ﬁ/.n Jiro Sy 0 0 0
i Ja i 0 0 0
Jois Jn2 Ju 0 0 0
J, =
! 0 0 0 22—l - l-w (@4
0 0 0 —w 0 w
0 0 0 | —w w 0 |

where w is a free parameter that determines the lower 3 x 3 principal minor. The total
number of parameters is reduced to four, just one more than in compressible elasticity.
Thus the following practical rule emerges : any compressible-clasticity principle characterized
by the coeflicients (26) can be extended to embody incompressibility by modifying U as
follows :

(a) Replace ¢ and e by s and g, respectively. (In fact, only the first modification is
actually needed, since s’g = s’¢e, ctc.)

(b) Add the pressure and volumetric strain terms characterized by the lower 3x 3
principal minor in (44). It @ is zero the volumetric strain drops out as independent field
and the additional terms reduce to

5

5(,;‘()14_()”)“-}- é(pl‘,()/')l‘ = —J [fk +[3div ﬁ]dy
[ 4

(45)

Furthermore, in exact incompressibility only the term — g div u survives.
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7. LAME SPLITTING

Consideration of the Lamé splitting (19) is of interest because of historical reasons,
since the first mixed principle encompassing compressible and incompressible elasticity con-
structed by Herrmann (1963) was based on it. Again one can start by postulating a quadratic
form for the generalized strain energy Uy, (where subscripts stand for “*Lamé split™) :

(2 [t Il Lk L Leh] [e)
".'e l:;l 1::! 123! f:gh Izjh i:gh é
1 T I“l 51 11 134" [15“ 136h e’
UL==] < \ i - : < >dv, 46
t ZJ\‘ q Y LI Y LAY PO LAY PR PO 6 @0
q' [SY LAY PN LY N L P PP P g
\([“/ -lhlhr /g.:hr [P LA A lys los | \OHJ

in which the I's coefficients take the place of the js, and where the new terms are

t=0o—¢gh, t'=C¢ ' =CDu ¢ =73v/(l+v),
G=3p. " =M. ¢ = —&idiva, ¢ =g/ €Y))
Going through the same mechanics once obtains relations similar to (35)-(40) with s, g, p.
k and D, replaced by 1. e, ¢. 4 and D, respectively. But now h't is not necessarily zero and
consequently the counterpart of (41) retains more terms:
Ae = 1,,¢ + 1.6+ 1, ¢ +h(l, 00 +1,50+1,,0°),
At = 1 F+ 108 100"+ Ch(ly 0 + LT+ 1,0,
o = ,|fi"‘{:qt"+f“r“+ch(l_;40q+[)50+13°O“)
+hh (1 3+ 1,7 +15,1) = bl p+ 160" + 16 p")
AU = h{;‘. !({14%"!"{34:(‘*'1;4?“)+[440q+[45(}+i460“,
Ag =W (1 T+ 10 + 1)+ LsG+ 154" + 564" (48)
Consistency with the field equations provides the twelve constraints
L+l +Ly =0, La+his+lig=0, la+l+h; =0,
Latlis+le =0, lh+in+hy =1, Li+hs+lhe=0,
lis+litlie =0, Lg+lss+lee=1, lis+l+13=0,

Latlis+la =00 Lis+ls+ls=0, ls+ls+156=0. 49)

This leaves 21 — 12 = 9 independent parameters in the functional-generating symmetric
matrix

(50)

l4(=
' 1!4 [24 !.N 144 145 146

/H‘n /Ih /]6 146 156 IbﬁJ

If the off-diagonal blocks of this matrix are set to zero as in (43). Ly becomes L, and the
conditions on the remaining nonzero coefficients are identical to those of J,.
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Treatment of the more general splitting (12) with 7 # 0 does not cause any particular
difficulties. However, as splittings other than (18) do not accommodate anisotropic
materials naturally, they will not be investigated further.

8. SPECIALIZATIONS

The simplest principle (in the sense of having the most sparse J matrix) that accom-
modates both compressible and incompressible elasticity is obtained by specializing (44) to

0000 0o o0 o]
000 0 0 0
001 0 0 0
L,=10 0 0 -1 0 1 S
000 0 00
000 1 0 0

This choice leaves only displacements and pressures as independent field variables and
yields

.

Up(u,p) = L(s*.g") — (ﬁ 51% +div ﬁ),, = I(s*, e), — (%\ +p div ﬁ>'. (52)

v

which may be viewed as a modification of the minimum potential energy functional. For

practical use it is important to note that g* may be replaced by e in the first integral since

tensor s is traceless. In the incompressible limit U, collapses to L(s* ¢),. — (j. div u),..
The specialization

~

0 -1 1 0 0 0
— L0 0 0 0
l 0 0 0 0 0
Je=1] 0 o 0 0 =1 I (53)
0 0 — I 0
0 0 0 I 0 0]

reduces U, — P to the five-field functional presented by Atluri and Reissner (1989 in that
paper p and ¢ are defined as the negatives of the quantities used here). Notice that since
both 3 x 3 principal minors of J ., display the Hu-Washizu structure of compressible
elasticity, use of (24) yields

Uaw = Un(3.8.0)+ U (ph, O, 0°h) = 5(s*,8)0 + G.g" =)y + 12", D) +5(0° = 0) . (54)
in which again g* and g may be replaced by e and &, respectively. As s # 0, this functional
does not accommodate exact incompressibility. This drawback can be ecasily corrected,
however, through the techniques discussed in Section 6.

Finally, specialization of (50) to

- - -~

0 0 0 0 0 0 0 -1 l 0 0 0

0 0 0 0 0 0 -1 1 0 0 0 0

0o 0 1 0 0 0 1 0 0 0 0 0
Ly = , Lg=

0 0 0 -1 0 1 0 0 0 -1 0 1

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 l 0 OJ | 0 0 0 I 0 0

i (55)
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reduces the functional {’;,— P to those presented by Herrmann (1965) and Franca (1989),
respectively : which are identified as Uy — P and Uy~ P in the sequel.

Herrmann's functional. which as noted above has historical importance. contains two
independent fields : displacements u and pseudo pressure ¢. Its U functional is

-

Unli.g) = é(r“.e">.—<f,’—,. +4 div u) (56)

-t 12
The upper and lower 3 x 3 principal minors of L, display the structure of the minimum
potential energy and stress-displacement Reissner compressible elasticity functions, respec-
tively.

Franca's functional contains four independent fields: extra stress r, total strains e,
displacements u and pseudo pressure ¢. Its U functional is

Up(E.8.0.9) = 1z, &), + (7. —8), — (ﬁ +q div ﬁ) . (57)
g

2

The upper and lower 3 x 3 principal minors of L, display the structure of the Hu-Washizu
and stress -displucement Reissner compressible-elasticity functions. respectively.

9. CONCLUSIONS

The parametrized formulations presented here extend the parametrized functionals of
Felippa and Militello (1989, 1990) to accommodate incompressibility. In doing so a wider
and perhaps bewildering range of possibilitics is ¢encountered, which raises some questions
as regards the usefulness of functional parametrization techniques.

The formulation of parametrized variational principles oflers conceptual and practical
advantages. From a conceptual standpoint the technique is intellectually satisfying in that
all possible variational forms are obtained once and for all. This should be contrasted to
the conventional case-by-case derivation, which can only tuke “potshots™ at the infinite
domain of possible functionals. The key practical advantage is that generating matrix
coceflicients may be left free in finite element applications down to the element level, and
used to enhance the quality of the numerical approximations as discussed in Felippa
(1989a.b,c) und Felippa and Militello (1989, 1990).

However, coming fuce to fuce with twelve free parameters as in Section 5 may be
confusing and negate the cluimed benefits of generality. The simplifications of Scction 6
appear reasonable from an applications standpoint because: (1) they cut the number of
independent parameters while retaining flexibility in the weighting of the participating ficlds,
and (2) all important specific functionals proposed to date are still covered.

Finally, the simplicity and generality of the functionals based on the deviatoric splitting
(18) should be kept in mind. It is diflicult to understand why the finite clement literature is
still preoccupied with the Lamé splitting and associated functionals. Not only is this splitting
unnatural for anisotropic materials but note that associated functionals such as (56) and
(57) degenerate for 2 = 0, which happensif'v = 0. At this value, & = 0. ¢ vanishes identically,
and 0/0 terms requiring special treatment appear in U. As a zero Poisson’s ratio is physically
realizable the cluim to generality of application, even with restriction to isotropic behavior,
is scriously weakened.
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